

Fifty Quick Ideas to Improve Your
Tests

Gojko Adzic, David Evans and Tom Roden

This book is for sale at http://leanpub.com/50quickideas-tests

This version was published on 2016-01-08

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2014 - 2016 Neuri Consulting LLP

http://leanpub.com/50quickideas-tests
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Gojko Adzic, David Evans and Tom Roden by
spreading the word about this book on Twitter!

The suggested hashtag for this book is #50quickideas.

Find out what other people are saying about the book by clicking
on this link to search for this hashtag on Twitter:

https://twitter.com/search?q=#50quickideas

http://twitter.com
https://twitter.com/search?q=%2350quickideas
https://twitter.com/search?q=%2350quickideas

Also By These Authors
Books by Gojko Adzic
Fifty Quick Ideas to Improve your User Stories

Impact Mapping

Books by David Evans
Fifty Quick Ideas to Improve your User Stories

Books by Tom Roden
Fifty Quick Ideas To Improve Your Retrospectives

http://leanpub.com/u/gojko
http://leanpub.com/50quickideas
http://leanpub.com/impact-mapping
http://leanpub.com/u/davidevans_neuri
http://leanpub.com/50quickideas
http://leanpub.com/u/tommroden
http://leanpub.com/50quickretrospectives

Contents

Introduction . 1

Explore capabilities, not features 5

Tap into your emotions . 8

Snoop on the competition 12

Focus on key examples . 16

Describe what, not how . 23

Separate decisions, workflows and technical interactions 27

Decouple coverage from purpose 31

Make developers responsible for checking 35

The End . 39

Authors . 40

Bibliography and resources 41

Legal Stuff . 43

Introduction

This book will help you test your software better, easier and
faster. It’s a collection of ideas we’ve used with various clients in
many different contexts, from small web start-ups to the world’s
largest banks, to help team members collaborate better on defining
and executing tests. Many of these ideas also help teams engage
their business stakeholders better in defining key expectations and
improve the quality of their software products.

Who is this book for?

This book is primarily aimed at cross-functional teams working in
an iterative delivery environment, planning with user stories and
testing frequently changing software under the tough time pressure
of short iterations. The intended audience are people with a solid
understanding of the basics of software testing, who are looking for
ideas on how to improve their tests and testing-related activities.
The ideas in this book will be useful to many different roles,
including testers, analysts and developers. You will find plenty of
tips on how to organise your work better so that it fits into short
iterative cycles or flow-based processes, and how to help your team
define and organise testing activities better.

1

Introduction 2

Who is this book not for?

This book doesn’t cover the basics of software testing, nor does it
try to present a complete taxonomy of all the activities a team needs
to perform to inspect and improve the quality of their software. It’s
a book about improving testing activities, not setting up the basics.
We assume that readers know about exploratory testing and test
automation, the difference between unit tests and integration tests,
and the key approaches to defining tests. In short, this isn’t the first
book about testing you should read. There are plenty of good basic
books out there, so read them first and then come back. Please don’t
hate us because we skipped the basics, but there is only so much
space in the book and other people cover the basics well enough
already.

What’s inside?

Unsurprisingly, the book contains exactly fifty ideas. They are
grouped into four major parts:

• Generating testing ideas: This part deals with activities for
teams to engage stakeholders in more productive discussions
around needs and expectations. The ideas in this part are
equally applicable to manual and automated testing, and
should be particularly useful to people looking for inspiration
on improving exploratory testing activities.

• Designing good checks: This part deals with defining good
deterministic checks that can be easily automated. The ideas
in this part will help you select better examples for your
tests and specifications, and in particular help with the given-
when-then style of acceptance criteria.

• Improving testability: This part contains useful architectural
and modelling tricks for making software easier to observe

Introduction 3

and control, improve the reliability of testing systems and
make test automation code easier to manage. It should be
particularly useful for teams that suffer from unreliable au-
tomated tests due to complex architectural constraints.

• Managing large test suites: This part provides tips and sug-
gestions on dealing with the long-term consequences of
iterative delivery. In it, you’ll find ideas on how to organise
large groups of test cases so that they are easy to manage
and update, and how to improve the structure of individual
tests to simplify maintenance and reduce the costs associated
with keeping your tests in sync with the frequently changing
underlying software.

Each part contains ideas that we’ve used with teams over the last
five or six years to help themmanage testing activities better and get
more value out of iterative delivery. Software delivery is incredibly
contextual, so some stories will apply to your situation, and some
won’t. Treat all the proposals in this book as experiments.

Where to find more ideas?

There is only so much space in a book, and some of the ideas
described deserve entire books of their own. We provide plenty of
references for further study and pointers for more detailed research
in the bibliography at the end of this book. If you’re reading
this book in electronic form, all the related books and articles are
clickable links. If you’re reading the book on paper, tapping the text
won’t help. To save you from having to type in long hyperlinks, we
provide all the references online at 50quickideas.com.

If you’d like to get more information on any of the ideas, get
additional tips or discuss your experiences with peers, join the
discussion group 50quickideas.

http://50quickideas.com/l/ts_1
https://groups.google.com/forum/#!forum/50quickideas

Introduction 4

This book is part of a series of books on improving various aspects
of iterative delivery. If you like it, check out the other books from
the series at 50quickideas.com.

http://50quickideas.com/l/ts_2

Explore capabilities, not
features

As software features are implemented, and user stories become
ready for exploratory testing, it’s only logical to base exploratory
testing sessions on new stories or changed features. Although it
might sound counter-intuitive, story-oriented exploratory testing
sessions lead to tunnel vision and prevent teams from getting the
most out of their effort.

Stories and features are a solid starting point for coming up with
good deterministic checks. However, they aren’t so good for ex-
ploratory testing. When exploratory testing is focused on a feature,
or a set of changes delivered by a user story, people end up
evaluating whether the feature works, and rarely stray off the
path. In a sense, teams end up proving what they expect to see.
However, exploratory testing is most powerful when it deals with
the unexpected and the unknown. For this, we need to allow
tangential observations and insights, and design new tests around
unexpected discoveries. To achieve this, exploratory testing can’t be
focused purely on features.

Good exploratory testing deals with unexpected risks, and for this
we need to look beyond the current piece of work. On the other

5

Explore capabilities, not features 6

hand, we can’t cast the net too widely, because testing would
lack focus. A good perspective for investigations that balances
wider scope with focus is around user capabilities. Features provide
capabilities to users to do something useful, or take away user
capabilities to do something dangerous or damaging. A good way
to look for unexpected risks is not to explore features, but related
capabilities instead.

Key benefits

Focusing exploratory testing on capabilities instead of features leads
to deeper insights and prevents tunnel vision.

A good example is the contact form we built for MindMup. The
related software feature was that a support request is sent when
a user fills in the form. We could have explored the feature using
multiple vectors, such as field content length, email formats, inter-
national character sets in the name or the message, but ultimately
this would only focus on proving that the form worked. Casting the
net a bit wider, we identified two capabilities related to the contact
form:

• A user should be able to contact us for support easily in case
of trouble. We should be able to support them easily, and
solve their problems.

• Nobody should be able to block or break the contact channels
for other users through intentional or unintentional misuse.

We set those capabilities as the focus of our exploratory testing
session, and this led us to look at the accessibility of the contact
form in case of trouble, and the ease of reporting typical problem
scenarios. We discovered two critically important insights.

The first was that a major cause of trouble would not be covered
by the initial solution. Flaky and unreliable network access was

Explore capabilities, not features 7

responsible for many incoming support requests. But when the
Internet connection for users went down randomly, even though
the form was filled in correctly, the browser might fail to connect
to our servers. If someone suddenly went completely offline, the
contact form wouldn’t actually help at all. None of those situations
should happen in an ideal world, but when they did, that’s when
users actually needed support. So the feature was implemented
correctly, but there was still a big capability risk. This led us to
offer an alternative contact channel for when the network was
not accessible. We displayed the alternative contact email address
prominently on the form, and also repeated it in the error message
if the form submission failed.

The second big insight was that people might be able to contact us,
but without knowing the internals of the application, they wouldn’t
be able to provide information for troubleshooting in case of data
corruption or software bugs. That would pretty much leave us in
the dark, and disrupt our ability to provide support. As a result, we
decided not to even ask for common troubleshooting information,
but instead obtain and send it automatically in the background.
We also pulled out the last 1000 events that happened in the user
interface, and sent them automatically with the support request, so
that we could replay and investigate what exactly happened.

How to make it work

To get to good capabilities for exploring, brainstorm what a feature
allows users to do, or what it prevents them from doing. When
exploring user stories, try to focus on the user value part (‘In order
to…’) rather than the feature description (‘I want …’).

If you use impact maps for planning work, the third level of the map
(actor impacts) are a good starting point for discussing capabilities.
Impacts are typically changes to capabilities. If you use user story
maps, the top-level item in the user story map spine related to the
current user story is a nice starting point for discussion.

Tap into your emotions

As testers are usually very quick to point out, the happy path is just
the tip of the iceberg when it comes to the types of tests needed for
adequately covering the many risks of any new software feature.

Starting with the happy path scenario certainly makes sense, as it
provides us with a strong initial key example and a basis fromwhich
to think about other possibilities, but we don’t want to get stuck
there.

It is not always easy to see what other paths to take, what other
permutations to try and techniques to use. Commonly taught tech-
niques like boundary value analysis and equivalence partitioning
are good ways of flushing out specific tests and focusing coverage,
but they are not enough in themselves.

Whether in a specification workshop, designing test ideas after-
wards or in an exploratory test session, having a heuristic for test
design can stimulate some very useful discussion and upturn some
stones that otherwise might have been left untouched.

The heuristic we propose is based on nine emotions or types of
behaviour: scary, happy, angry, delinquent, embarrassing, desolate,
forgetful, indecisive, greedy, stressful. As a mnemonic, ‘shaded figs’

8

Tap into your emotions 9

is the best we can come up with, but even if it is too long to
remember what each one stands for, hopefully it will trigger the
thought to look it up.

Key benefits

The ‘shaded figs’ heuristic helps teams design more complete tests,
whether up-front, say in a specification workshop, or during an
exploratory session. It stimulates new ideas for tests and exposes
other areas of risk for consideration.

Using this spectrum of test type ideas can deliver good broad
coverage pretty quickly when designing or executing tests. It can
also be a nice reminder in a specification workshop if you are
looking for alternatives to the initial key example and for negative
cases from a variety of perspectives.

How to make it work

One way to make this work is to start with the happy path and look
along it for alternatives. As we step through the happy path, start
thinking of other paths that could be taken using on this checklist.

Have the heuristic by your side and refer to it or work through it as
a team as you explore a story or feature.

Here is our set of emotional heuristics to stimulate test design,
taking an emotional roller coaster of a ride along the way:

• The scary path – if this path was followed it would really
tear the house down, and everything else with it. Flush out
those areas of the highest risk to the stakeholders. Think what
would scare each stakeholder the most about this piece of
functionality or change.

Tap into your emotions 10

• The happy path – the key example, positive test, that de-
scribes the straightforward case. This is the simplest path
through the particular area of behaviour and functionality
that we can think of, it is the simplest user interaction and
we expect it to pass every time (other than its first ever run
maybe).

• The angry path – with the angry path we are looking for tests
which we think will make the application react badly, throw
errors and get cross with us for not playing nicely. These
might be validation errors, bad inputs, logic errors.

• The delinquent path – consider the security risks that need
testing, like authentication, authorisation, permissions, data
confidentiality and so on.

• The embarrassing path – think of the things that, should
they break, would cause huge embarrassment all round. Even
if they wouldn’t be an immediate catastrophe in loss of
business they might have a significant impact on credibility,
internally or externally. This could be as simple as something
like spelling quality as ‘Qality’, as we once saw on a testing
journal (just think of the glee on all those testers’ faces).

• The desolate path – provide the application or component
with bleakness. Try zeros, nulls, blanks or missing data,
truncated data and any other kind of incomplete input, file or
event that might cause some sort of equally desolate reaction.

• The forgetful path – fill up all the memory and CPU capacity
so that the application has nowhere left to store anything. See
how forgetful it becomes and whether it starts losing data,
either something that had just been stored, or something it
was already holding.

• The indecisive path – simulate being an indecisive user,
unable to quite settle on one course of action. Turn things on
and off, clicking back buttons on the browser, move between
breadcrumb trails with half-entered data. These kinds of
actions can cause errors in what the system remembers as

Tap into your emotions 11

the last known state.
• The greedy path – select everything, tick every box, opt into
every option, order lots of everything, just generally load up
the functionality with as much of everything as it allows to
see how it behaves.

• The stressful path – find the breaking point of the functions
and components so you can see what scale of solution you
currently have and give you projections for future changes
in business volumes.

This technique works really well in specification workshops when
multiple people are present, because the non-happy-path ideas are
likely to generate interesting conversations, asking questions that
have not been thought of yet and that are hard to answer. Some
questionsmay need to be taken away and investigated further (non-
functional characteristics repeatedly have this tendency).

Snoop on the competition

As a general rule, teams focus the majority of testing activities on
their zone of control, on the modules they develop, or the software
that they are directly delivering. But it’s just as irresponsible not
to consider competition when planning testing as it is in the
management of product development in general, whether the field
is software or consumer electronics.

Software products that are unique are very rare, and it’s likely that
someone else is working on something similar to the product or
project that you are involved with at the moment. Although the
products might be built using different technical platforms and
address different segments, key usage scenarios probably translate
well across teams and products, as do the key risks andmajor things
that can go wrong.

When planning your testing activities, look at the competition for
inspiration – the cheapest mistakes to fix are the ones already made
by other people. Although it might seem logical that people won’t
openly disclose information about their mistakes, it’s actually quite
easy to get this data if you know where to look.

Teams working in regulated industries typically have to submit
detailed reports on problems caught by users in the field. Such

12

Snoop on the competition 13

reports are kept by the regulators and can typically be accessed in
their archives. Past regulatory reports are a priceless treasure trove
of information on what typically goes wrong, especially because
of the huge financial and reputation impact of incidents that are
escalated to such a level.

For teams that do not work in regulated environments, similar
sources of data could be news websites or even social media net-
works. Users today are quite vocal when they encounter problems,
and a quick search for competing products on Facebook or Twitter
might uncover quite a few interesting testing ideas.

Lastly, most companies today operate free online support forums
for their customers. If your competitors have a publicly available
bug tracking system or a discussion forum for customers, sign up
andmonitor it. Look for categories of problems that people typically
inquire about and try to translate them to your product, to get more
testing ideas.

For high-profile incidents that have happened to your competitors,
especially ones in regulated industries, it’s often useful to conduct
a fake post-mortem. Imagine that a similar problem was caught by
users of your product in the field and reported to the news. Try to
come up with a plausible excuse for how it might have happened,
and hold a fake retrospective about what went wrong and why such
a problem would be allowed to escape undetected. This can help to
significantly tighten up testing activities.

Key benefits

Investigating competing products and their problems is a cheapway
of getting additional testing ideas, not about theoretical risks that
might happen, but about things that actually happened to someone
else in the same market segment. This is incredibly useful for teams
working on a new piece of software or an unfamiliar part of the

Snoop on the competition 14

business domain, when they can’t rely on their own historical data
for inspiration.

Running a fake post-mortem can help to discover blind spots
and potential process improvements, both in software testing and
in support activities. High-profile problems often surface because
information falls through the cracks in an organisation, or people
do not have sufficiently powerful tools to inspect and observe
the software in use. Thinking about a problem that happened to
someone else and translating it to your situation can help establish
checks and make the system more supportable, so that problems do
not escalate to that level. Such activities also communicate potential
risks to a larger group of people, so developers can be more aware
of similar risks when they design the system, and testers can get
additional testing ideas to check.

The post-mortem suggestions, especially around improving the
support procedures or observability, help the organisation to handle
‘black swans’ – unexpected and unknown incidents that won’t be
prevented by any kind of regression testing. We can’t know upfront
what those risks are (otherwise they wouldn’t be unexpected), but
we can train the organisation to react faster and better to such
incidents. This is akin to government disaster relief organisations
holding simulations of floods and earthquakes to discover facilita-
tion and coordination problems. It’s much cheaper and less risky to
discover things like this in a safe simulated environment than learn
about organisational cracks when the disaster actually happens.

How to make it work

When investigating support forums, look for patterns and cate-
gories rather than individual problems. Due to different imple-
mentations and technology choices, it’s unlikely that third-party
product issues will directly translate to your situation, but problem
trends or areas of influence will probably be similar.

Snoop on the competition 15

One particularly useful trick is to look at the root cause analyses
in the reports, and try to identify similar categories of problems in
your software that could be caused by the same root causes.

Focus on key examples

User stories need clear, precise and testable acceptance criteria so
that they can be objectively measured. At the same time, regardless
of howmany scenarios teams use for testing, there are always more
things that can be tested. It can be tempting to describe acceptance
criteria with loads of scenarios, and look at all possible variations
for the sake of completeness. Although trying to identify all possible
variations might seem to lead to more complete testing and better
stories, this is a sure way to destroy a good user story.

Because fast iterative work does not allow time for unnecessary
documentation, acceptance criteria often doubles as a specification.
If this specification is complex and difficult to understand, it is
unlikely to lead to good results. Complex specifications don’t invite
discussion. People tend to read such documents alone and selec-
tively ignore parts which they feel are less important. This does
not really create shared understanding, but instead just provides an
illusion of precision and completeness.

Here is a typical example (this one was followed by ten more pages
of similar stuff):

16

Focus on key examples 17

Feature: Payment routing

In order to execute payments efficiently

As a shop owner

I want the payments to be routed

using the best gateway

Scenario: Visa Electron, Austria

Given the card is 4568 7197 3938 2020

When the payment is made

The selected gateway is Enterpayments-V2

Scenario: Visa Electron, Germany

Given the card is 4468 7197 3939 2928

When the payment is made

The selected gateway is Enterpayments-V1

Scenario: Visa Electron, UK

Given the card is 4218 9303 0309 3990

When the payment is made

The selected gateway is Enterpayments-V1

Scenario: Visa Electron, UK, over 50

Given the card is 4218 9303 0309 3990

And the amount is 100

When the payment is made

The selected gateway is RBS

Scenario: Visa, Austria

Given the card is 4991 7197 3938 2020

When the payment is made

The selected gateway is Enterpayments-V1

...

The team that implemented the related story suffered from a ton

Focus on key examples 18

of bugs and difficult maintenance, largely caused by the way they
captured examples. A huge list such as this one is not easy to break
into separate tasks. This means that only one pair of developers
could work on it instead of sharing the load with others. Because
of this, the initial implementation of underlying features took a
few weeks. There was so much complexity in the scenarios, but
nobody could say if they painted the complete picture. Because
the list of scenarios was difficult to understand, automated tests
did not give business users any confidence, and they had to spend
time manually testing the story as well. The long list of scenarios
gave the delivery team a false sense of completeness, so it prevented
them from discussing important boundary conditions with business
stakeholders. Several important cases were interpreted by different
people in different ways. This surfaced only after a few weeks of
running in production, when someone spotted increased transac-
tion costs.

Although each individual scenario might seem understandable,
pages and pages of this sort of stuff make it hard to see the big
picture. These examples try to show how to select a payment
processor, but the rules aren’t really clear from the examples. The
objective was to send low-risk transactions to a cheaper processor,
and high-risk transactions to a more expensive processor with
better fraud controls.

An overly complex specification is often a sign that the tech-
nical model is misaligned with the business model, or that the
specification is described at the wrong level of abstraction. Even
when correctly understood, such specifications lead to software
that is hard to maintain, because small changes in the business
environment can lead to disproportionately huge changes in the
software.

For example, important business concepts such as transaction risk
score, processor cost or fraud capabilities were not captured in the
examples for payment routing. Because of this, small changes to

Focus on key examples 19

the business rules required huge changes to a complex network of
special cases in the software. Minor adjustments to risk thresholds
led to a ton of unexpected consequences. When one of the proces-
sors with good fraud-control capabilities reduced prices, most of the
examples had to change and the underlying functions were difficult
to adjust. That means that the organisation couldn’t take advantage
of the new business opportunity quickly.

Instead of capturing complex scenarios, it is far better to focus on
illustrating user stories with key examples. Key examples are a small
number of relatively simple scenarios that are easy to understand,
evaluate for completeness and critique. This doesn’t mean throwing
away precision – quite the opposite – it means finding the right
level of abstraction and the right mental model that can describe a
complex situation better.

The payment routing case could be broken down into several groups
of smaller examples. One group would show transaction risk based
on the country of residence and country of purchase. Another group
of examples would describe how to score transactions based on
payment amount and currency. Several more groups of examples
would describe other transaction scoring rules, focused only on
the relevant characteristics. One overall set of examples would
describe how to combine different scores, regardless of how they
were calculated. A final group of examples would describe how to
match the risk score with compatible payment processors, based on
processing cost and fraud capabilities. Each of these groups might
have five to ten important examples. Individual groups would be
much easier to understand. Taken together, these key examples
would allow the team to describe the same set of rules much more
precisely but with far fewer examples than before.

Key benefits

Several simple groups of key examples are much easier to under-
stand and implement than a huge list of complex scenarios. Smaller

Focus on key examples 20

groups make it easier to evaluate completeness and argue about
boundary conditions, so they allow teams to discover and resolve
inconsistencies and differences in understanding.

Breaking down complex examples into several smaller and focused
groups leads to more modular software, which reduces future
maintenance costs. If the transaction risk was modelled with ex-
amples of individual scoring rules, that would give a strong hint
to the delivery team to capture those rules as separate functions.
Changes to an individual scoring threshold would not impact all the
other rules. This would avoid unexpected consequences when rules
change. Changing the preferred processor when they reduce prices
would require small localised changes instead of causing weeks of
confusion.

Describing different aspects of a story with smaller and focused
groups of key examples allows teams to divide work better. Two
people can take the country-based scoring rules, two other people
could implement routing based on final score. Smaller groups of
examples also become a natural way of slicing the story – some
more complex rules could be postponed for a future iteration, but
a basic set of rules could be deployed in a week and provide some
useful business value.

Finally, focusing on key examples significantly reduces the sheer
volume of scenarios that need to be checked. Assuming that there
are six or seven different scoring rules and that each has five key
examples, the entire process can be described with roughly eighty
thousand examples (five to the power of seven). Breaking it down
into groups would allow us to describe the same concepts with
forty or so examples (five times seven, plus a few overall examples
to show that the rules are connected correctly). This significantly
reduces the time required to describe and discuss the examples. It
also makes the testing much faster, whether it was automated or
manual. Clearer coverage of examples and models also provide a
much better starting point for any further exploratory testing.

Focus on key examples 21

How to make it work

The most important thing to remember is that if the examples are
too complex, your work on refining a story isn’t complete. There
are many good strategies for dealing with complexity. Here are four
that we often use:

• Look for missing concepts
• Group by commonality and focus only on variations
• Split validation and processing
• Summarise and explore important boundaries

Overly complex examples, or too many examples, are often a sign
that some important business concepts are not explicitly described.
In the payment routing examples, transaction risk is implied but
not explicitly described. Discovering these concepts allows teams
to offer alternative models and break down both the specification
and the overall story into more manageable chunks. We can use
one set of examples to describe how to calculate the risk score, and
another for how to use a score once it is calculated.

Avoid mixing validation and usage – this is a common way of
hiding business concepts. For example, teams often use the same
set of examples to describe how to process a transaction and all
the ways to reject a transaction without processing (card number
in incorrect format, invalid card type based on first set of digits,
incomplete user information etc). The hidden business concept in
that case is ‘valid transaction’. Making this explicit would allow
splitting a single large set of complex examples into two groups
– determining whether a transaction is valid, and working with a
valid transaction. These groups can then be broken down further
based on structure.

Long lists of examples often contain groups that are similar in
structure or have similar values. In the payment routing story, there

Focus on key examples 22

were several pages of scenarios with card numbers and country of
purchase, a cluster of examples involving two countries (residence
and delivery, and some scenarios where the value of a transaction
was important. Identifying commonalities in structure is often a
valuable first step for discovering meaningful groups. Each group
can then be restructured to show only the important differences
between examples, reducing the cognitive load.

The fourth good strategy is to identify important boundary condi-
tions and focus on them, ignoring examples that do not increase
our understanding. For example, if 50 USD is the risk threshold
for low-risk countries, and 25 USD for high-risk countries, then the
important boundaries are:

• 24.99 USD from a high-risk country
• 25 USD from a high-risk country
• 25 USD from a low-risk country
• 49.99 USD from a low-risk country
• 50 USD from a low-risk country

A major problem causing overly complex examples is the misun-
derstanding that testing can somehow be completely replaced by a
set of carefully chosen examples. For most situations we’ve seen,
this is a false premise. Checking examples can be a good start, but
there are still plenty of other types of tests that are useful to do.

Don’t aim to fully replace testing with examples in user stories –
aim to create a good shared understanding, and give people the
context to do a good job. Five examples that are easy to understand
and at the right level of abstraction are much more effective for this
than hundreds of very complex test cases.

Describe what, not how

By far the most common mistake inexperienced teams make when
describing acceptance criteria for a story is to mix the mechanics
of test execution with the purpose of the test. They try to describe
what they want to test and how something will be tested all at once,
and get lost very quickly.

Here is a typical example of a description of how something is to be
tested:

Scenario: basic scenario

Given the user Mike logs on

And the user clicks on "Deposit"

And the page reloads

Then the page is "Deposit"

And the user clicks on "10 USD"

And the page reloads

Then the page is "Card Payment"

When the user enters a valid card number

And the user clicks on "Submit"

And the payment is approved

And the page reloads

23

Describe what, not how 24

Then the page is "Account"

And the account field shows 10 USD

And the user clicks on "Find tickets"

And the user clicks on "Quick trip"

And the page reloads

Then the page is "Tickets"

And the price is 7 USD

And the user clicks on "Buy tickets"

Then the purchase is approved

And the page reloads

And a ticket confirmation number is displayed

And the account field shows 3 USD

This is a good test only in the sense that someone with half a brain
can follow the steps mechanically and check whether the end result
is 3 USD. It is not a particularly useful test, because it hides the
purpose in all the clicks and reloads, and leaves the team with only
one choice for validating the story. Even if only a tiny fraction of
the code contains most of the risk for this scenario, it’s impossible
to narrow down the execution. Every time we need to run the test,
it will have to involve the entire end-to-end application stack. Such
tests unnecessarily slow down validation, make automation more
expensive, make tests more difficult to maintain in the future, and
generally just create a headache for everyone involved.

An even worse problem is that specifying acceptance criteria like
this pretty much defeats the point of user stories – to have a useful
conversation. This level of detail is too low to keep people interested
in discussing the underlying assumptions.

Avoid describing themechanics of test execution or implementation
details with user stories. Don’t describe how you will be testing
something, keep the discussion focused on what you want to test
instead. For example:

Describe what, not how 25

Scenario: pre-paid account purchases

Given a user with 10 USD in a pre-paid account

When the user attempts to buy a 7 USD ticket

Then the purchase is approved

And the user is left with 3 USD in the account

When most of the clutter is gone, it’s easier to discuss more
examples. For example, what if there is not enough money in the
account?

Pre-paid
balance

Ticket cost Purchase
status

Resulting
balance

10 USD 7 USD approved 3 USD
5 USD 7 USD rejected 5 USD

This is where the really interesting part comes in. Once we remove
the noise, it’s easy to spot interesting boundaries and discuss them.
For example, what if the pre-paid balance is 6.99 and someonewants
to buy a 7 USD ticket?

As an experiment, go and talk to someone in sales about that case
– most likely they’ll tell you that you should take the customer’s
money. Talk to a developer, and most likely they’ll tell you that
the purchase should be rejected. Such discussions are impossible to
have when the difficult decisions are hidden behind clicks and page
loads.

Key benefits

It’s much faster to discuss what needs to be done instead of how it
will be tested in detail, so keeping the discussion on a higher level
allows the team to go through more stories faster, or in more depth.
This is particularly important for teams that have limited access to
business sponsors, and need to use their time effectively.

Describe what, not how 26

Separately describing the purpose and themechanics of a test makes
it easier to use tests for communication and documentation. The
next time a team needs to discuss purchase approval rules with
business stakeholders, such tests will be a great help. Although the
mechanics of testing will probably be irrelevant, a clear description
of what the current system does will be an excellent start for the
discussion. In particular it will help to remind the team of all
the difficult business decisions that were made months ago while
working on previous stories. An acceptance criterion that mixes
clicks and page loads with business decisions is useless for this.

Decoupling how something will be tested from what is being tested
significantly reduces future test maintenance costs. When a link on
a web page becomes a button, or users are required to log in before
selecting products, we only have to update the mechanics of testing.
If the purpose and themechanics are mixed together, it is impossible
to identify what needs to change. That’s the reason why so many
teams suffer from record-and-replay test maintenance.

How to make it work

A good rule of thumb is to split the discussions on how and what
into two separate meetings. Business sponsors are most likely not
interested in the mechanics of testing, but they need to make
decisions such as the $6.99 purchase. Engage decision-makers in
whiteboard discussions on what needs to be tested, and postpone
the discussion on how to test it for the delivery team later.

If you use a tool to capture specifications with examples, such as
Cucumber, FitNesse or Concordion, keep the human-readable level
focused on what needs to be tested, and keep the automation level
focused on how you’re checking the examples. If you use a different
tool, then clearly divide the purpose of the test and the mechanics
of execution into different layers.

Separate decisions,
workflows and technical
interactions

Any good test automation book will suggest that user interface
interactions need to be minimised or completely avoided. However,
there are legitimate cases where the user interface is the only thing
that can actually execute a relevant test. A common example is
where the architecture dictates that most of the business logic sits in
the user interface layer (such applications are often called ‘legacy’
even by people who write them, but they are still being written).
Another common situation is when an opaque, third-party com-
ponent drives an important business process, but has no sensible
automation hooks built into it. In such cases, teams often resort
to record-and-replay tools with horrible unmaintainable scripts.
They create tests that are so difficult to control and so expensive to
maintain that it’s only possible to afford to check a very small subset
of interesting scenarios. Teams in such situations often completely
give up on any kind of automation after a while.

There are two key problems with such tests. One is that they are
slow, as they often require a full application stack to execute. The

27

Separate decisions, workflows and technical interactions 28

other is that they are extremely brittle. Small user interface changes,
such as moving a button on the screen somewhere else, or changing
it to a hyperlink, break all the tests that use that element. Changes
in the application workflow, such as requiring people to be logged
in to see some previously public information, or introducing a back-
end authorisation requirement for an action, pretty much break all
the tests instantly.

There might not be anything we can do to make such tests run as
fast as the ones below the user interface, but there are definitely
some nice tricks that can significantly reduce the cost of mainte-
nance of such tests, enough to make large test suites manageable.
One of the most important ideas is to apply a three-layer approach
to automation: divide business-oriented decisions, workflows and
technical interactions into separate layers. Then ensure that all
business decision tests reuse the same workflow components, and
ensure that workflow components share technical interactions re-
lated to common user interface elements.

We’ve used this approach with many clients, from financial trading
companies workingwith thick-client administrative applications, to
companies developing consumer-facing websites. It might not be a
silver bullet for all possible UI automation situations, but it comes
pretty close to that, and deserves at least to be the starting point for
discussions.

Key benefits

A major benefit of the three-layer approach, compared to record-
and-replay tests, is much easiermaintenance. Changes are localised.
If a button suddenly becomes a hyperlink, all that needs to change
is one technical activity. Workflows depending on that button con-
tinue to work. If a workflow gets a new step, or loses one, the only
thing that needs to change is theworkflow component. All technical
activities stay untouched, as do any business rule specifications that

Separate decisions, workflows and technical interactions 29

use the workflow. Finally, because workflows are reused to check
business decisions, it’s easy to add more business checks.

The three-layer design pattern is inspired by similar ideas from the
popular page object pattern, but instead of tying business tests too
tightly to current web page structures, it decouples all common
types of change. Tests automated using page objects are easily bro-
ken by workflow changes that require modifications to transitions
between pages or affect the order of interactions. Because of this,
the three-layer approach is better for applications with non-trivial
workflows.

Applications with a lot of messy user interface logic often need a
good set of integration tests as well as business checks. Another
big benefit of the three-layer approach is that the bottom layer,
technical interactions, can be easily reused for technical integration
tests. This reduces the overall cost of test maintenance even further,
and allows the delivery team to automate new tests more easily.

How to make it work

Most test automation tools work with one or two layers of infor-
mation. Tools such as FitNesse, Concordion or Cucumber provide
two layers: the business specification and the automation code.
Developer-oriented tools such as Selenium RC and unit-testing
tools tend to offer only one layer, the automation code. So do
tester-oriented tools. This misleadsmany teams into flattening their
layer hierarchy too soon. Automation layers for most of these tools
are written using standard programming languages, which allow
for abstractions and layering. For example, using Concordion, the
top-level (human readable specification) can be reserved for the
business-decision layer, and the automation code below can be
structured to utilise workflow components, which in turn utilise
technical activity components.

Some tools, such as Cucumber, allow some basic reuse and ab-

Separate decisions, workflows and technical interactions 30

straction in the test specification (top level) as well. This theoret-
ically makes it possible to use the bottom automation layer only
for technical interactions, and push the top two layers into the
business-readable part of the stack. Unless your team has a great
many more testers than developers, it’s best to avoid doing this.
In effect, people will end up programming in plain text, without
any support from modern development tool capabilities such as
automated refactoring, contextual search and compilation checks.

Decouple coverage from
purpose

Because people mix up terminology from several currently popular
processes and trends in the industry, many teams confuse the
purpose of a test with its area of coverage. As a result, people often
write tests that are slower than they need to be, more difficult to
maintain, and often report failures at a much broader level than
they need to.

For example, integration tests are often equated with end-to-end
testing. In order to check if a service component is talking to the
database layer correctly, teams often write monstrous end-to-end
tests requiring a dedicated environment, executing workflows that
involve many other components. But because such tests are very
broad and slow, in order to keep execution time relatively short,
teams can afford to exercise only a subset of various communication
scenarios between the two components they are really interested in.
Instead, it would be much more effective to check the integration
of the two components by writing more focused tests. Such tests
would directly exercise only the communication scenarios between
the two interesting areas of the system, without the rest.

31

Decouple coverage from purpose 32

Another classic example of this confusion is equating unit tests
with technical checks. This leads to business-oriented checks being
executed at a much broader level than they need to be. For exam-
ple, a team we worked with insisted on running transaction tax
calculation tests through their user interface, although the entire
tax calculation functionality was localised to a single unit of code.
Theyweremisled by thinking about unit tests as developer-oriented
technical tests, and tax calculation clearly fell outside of that. Given
that most of the risk for wrong tax calculations was in a single Java
function, decoupling coverage (unit) from purpose (business test)
enabled them to realise that a business-oriented unit test would do
the job much better.

A third commonway of confusing coverage and purpose is thinking
that acceptance tests need to be executed at a service or API layer.
This is mostly driven by a misunderstanding of Mike Cohn’s test
automation pyramid. In 2009, Cohn wrote an article titled The
Forgotten Layer of the Test Automation Pyramid, pointing out the
distinction between user interface tests, service-level and unit tests.
Search for ‘test automation pyramid’ on Google Images, and you’ll
find plenty of examples where the middle tier is no longer about
API-level tests, but about acceptance tests (the top and bottom are
still GUI and unit). Some variants introduce additional levels, such
as workflow tests, further confusing the whole picture.

To add insult to injury, many teams try to clearly separate unit
tests from what they call ‘functional tests’ that need different tools.
This makes teams avoid unit-testing tools for functional testing,
instead introducing horrible monstrosities that run slowly, require
record-and-replay test design and are generally automated with
bespoke scripting languages that are quite primitive compared to
any modern programming tool.

To avoid this pitfall, make the effort to consider an area of coverage
separately from the purpose of a test. Then you’re free to combine
them. For example, you can have business-oriented unit tests, or

http://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
http://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid

Decouple coverage from purpose 33

technical end-to-end checks.

Key benefits

Thinking about coverage and purpose as two separate dimensions
helps teams reduce duplication between different groups of tests,
and leads to more focused, faster automation. In addition to speed-
ing up feedback, such focused tests are less brittle, so they will cause
fewer false alarms. By speeding up individual test execution, teams
can then afford to execute more tests and run themmore frequently.

By thinking about technical tests separately from whether they
are unit-level, component level or end-to-end tests, teams can also
make better decisions on how and where to automate such tests.
This often leads to technical tests being written with tools that
developers are already familiar with, and helps teams maintain
automated tests more easily.

How to make it work

Decide on purpose first, and let the purpose drive the choice of the
format in which you capture the test. Business-oriented tests should
be written in a language and format that allows teams to discuss
potential problems with business domain experts. Technical checks
can be written with a technical tool.

Once you’ve decided on the format and the purpose, think about
the minimal area of coverage that would serve the purpose for
that particular test. This will mostly be driven by the design of
the underlying system. Don’t force a test to execute through the
user interface just because it’s business oriented. If the entire risk
for tax calculation is in a single unit of code, by all means write a
unit test for it. If the risk is mostly in communication between two
components, write a small, focused integration test involving those
two areas only.

Decouple coverage from purpose 34

It’s perfectly fine to use tools commonly known as acceptance
testing frameworks for writing business-oriented unit tests. They
will run faster and be more focused.

Likewise, it’s perfectly fine to use tools commonly known as unit
testing frameworks for more than just unit tests, as long as such
groups of tests are clearly separated so they can be managed and
executed individually. If the programmers on the team already
know how to use JUnit, for example, it’s best to write technical
integration tests with this tool, and just execute them with a
separate task. In this case, the team can leverage their existing
knowledge of a tool for a slightly different purpose.

Beware though of mixing up tests with different areas of coverage,
because it becomes impossible to run individual groups in isolation.
For example, split out tests into separate libraries so you can run
true unit tests in isolation.

Make developers
responsible for checking

Many organisations start with test automation as an auxiliary activ-
ity – it needs to be done, but without interrupting the development
schedule. This often leads to test automation specialists working
after development, or even entire teams of people charged with
making testing faster and cheaper. This is a false economic premise,
and can lead to a lot of trouble later on.

By decoupling development and test automation, teams either
introduce a lot of duplicated work or unnecessarily delay feedback.
Manually running all the tests during development is rarely sus-
tainable, so development can officially finish without any serious
testing. If a developer receives feedback about potential problems
only after a different team automates tests, the code that needs to be
fixed might have been modified by some other people meanwhile.
This introduces a further delay, because developers need to coordi-
nate more and research other potential changes to fix problems.

In addition, when specialists are hired to automate tests, they are
often overwhelmed by work. Ten developers can produce a lot
more code than a single person can test, so specialist automation

35

Make developers responsible for checking 36

often introduces a bottleneck. The delivery pipeline slows down
to the speed of test automation, or software gets shipped without
completed testing. The first scenario is horrible because the or-
ganisation loses the ability to ship software quickly. The second
scenario is horrible because developers stop caring about testing,
and automated tests then just come to seem like a waste of time and
money. Developers do not design the system to be testable, and it
becomes even more difficult to automate tests, causing more delay
between development and testing. It’s a lose-lose situation.

Separate automation specialists rarely have the insight into system
internals, so the only option for them is to automate tests end-to-
end. Such tests will be unnecessarily slow and brittle, and take a lot
of time to maintain. Slow, difficult tests bolster the argument for
not disrupting the critical delivery path with tests.

Test automation specialists often use tools that developers are not
familiar with, so it is not easy for them to ask for help from the
rest of the team. Any potential test automation problems have to
be investigated by test automation experts, which creates a further
bottleneck. It’s a vicious circle where testing only gets further
separated from delivery, creating more problems.

The only economically sustainable way of writing and automating
hundreds of tests is to make developers responsible for doing it.
Avoid using specialist groups and test automation experts. Give
people who implement functionality the responsibility to execute
tests, and ensure they have the necessary information to do it
properly.

Key benefits

When the same people are responsible for implementing and chang-
ing code and automating the related tests, tests are generally auto-
mated a lot more reliably and execute much faster. Programmers

Make developers responsible for checking 37

have insight into system internals, they can use lots of different au-
tomation hooks, and they can design and automate tests depending
on the real area of risk, not just on an end-to-end basis. This also
means that developers can use the tools they like and are familiar
with, so any potential problem investigations can be delegated to a
larger group of people.

In addition, when developers are responsible for automation, they
will design the system to make it easy to control and observe
functionality in the first place. They will build modules that can
be tested in isolation, and decouple them so tests can run quickly.
This brings the benefit of faster testing, but a modular design also
makes it easier to evolve the system and implement future requests
for change.

When developers are responsible for test automation, the tests will
deliver fast feedback. The time between introducing a problem
and spotting it is significantly shorter, and the risk of someone
else modifying the underlying software meanwhile is pretty much
eliminated.

These three factors significantly change the economics of test
automation. Tests run faster, cheaper, they are more reliable, and
the system is more modular so it’s easier to write tests. There is no
artificial bottleneck later in testing, and no need to choose between
higher quality and faster deployment.

How to make it work

A common argument against letting developers automate tests
is to ensure independent feedback and avoid tunnel vision. The
right way to counter this is to ensure that the right people are
involved in designing the tests. Developers should be responsible
for automating the tests, but the entire team (including business
stakeholders and testers) should be involved in deciding what needs
to be tested.

Make developers responsible for checking 38

Teams without test automation experience should not hire au-
tomation experts to take on the work. External experts should
only be hired to teach developers how to use a particular tool for
automation, and provide advice on how best to design tests.

Teams with a high risk of automation being done wrongly can
further reduce the risk by pairing up testers and developers during
automation work, and by running some quick exploratory tests to
investigate the automation code.

The End

This book is part of a series of books on improving various aspects
of iterative delivery. If you like it, check out the other books from
the series at 50quickideas.com.

39

http://www.50quickideas.com/l/ts_3

Authors
Gojko Adzic is a strategic software delivery consultant who works
with ambitious teams to improve the quality of their software prod-
ucts and processes. Gojkowon the 2012 Jolt Award for the best book,
was voted by peers as the most influential agile testing professional
in 2011, and his blog won the UK Agile Award for the best online
publication in 2010. To get in touch, write to gojko@neuri.com or
visit gojko.net

David Evans is a consultant, coach and trainer specialising in the
field of Agile Quality. David helps organisations with strategic
process improvement and coaches teams on effective agile practice.
He is regularly in demand as a conference speaker and has had sev-
eral articles published in international journals. Contact David at
david.evans@neuri.com or follow him on Twitter @DavidEvans66

Tom Roden is a delivery coach, consultant and quality enthusiast,
helping teams and people make the improvements needed to thrive
and adapt to the ever changing demands of their environment. Tom
specialises in agile coaching, testing and transformation. Contact
Tom at tom.roden@neuri.com or follow him on Twitter @tomm-
roden.

40

http://gojko.net
https://twitter.com/davidevans66
https://twitter.com/TommRoden
https://twitter.com/TommRoden

Bibliography and resources
• Fifty Quick Ideas To Improve Your User Stories by Gojko
Adzic and David Evans, ISBN 978-0993088100, Neuri Con-
sulting 2014

• Domain-Driven Design: Tackling Complexity in the Heart
of Software by Eric Evans, ISBN 978-0321125217, Addison-
Wesley Professional 2003

• HowGoogle Tests Software by James A.Whittaker, Jason Ar-
bon and Jeff Carollo, ISBN 978-0321803023, Addison-Wesley
Professional 2012

• More Agile Testing: Learning Journeys for the Whole Team
by Lisa Crispin and Janet Gregory, ISBN 978-0321967053, 978-
0321967053

• Lessons Learned in Software Testing: A Context-Driven Ap-
proach by by Cem Kaner, James Bach and Bret Pettichord,
ISBN 978-0471081128, Wiley 2001

• Explore It!: Reduce Risk and Increase Confidence with Ex-
ploratory Testing by ElisabethHendrickson, ISBN 978-1937785024,
Pragmatic Bookshelf 2013

• A Practitioner’s Guide to Software Test Design by Lee Copeland,
ISBN 978-1580537919, Artech House 2004

• The Checklist Manifesto: How to Get Things Right by Atul
Gawande, ISBN 978-0312430009, Picador 2011

• Simple Testing Can Prevent Most Critical Failures: An Anal-
ysis of Production Failures in Distributed Data-Intensive Sys-
tems by Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna
Rodrigues, Xu Zhao, Yongle Zhang, Pranay U. Jain, and
Michael Stumm, University of Toronto, from 11th USENIX
Symposium on Operating Systems Design and Implementa-
tion, ISBN 978-1-931971-16-4, USENIX Association 2014

41

http://www.amazon.com/gp/product/B00OGT2U7M/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00OGT2U7M&linkCode=as2&tag=swingwiki-20&linkId=3M3ZO55CDBNSCOKZ
http://www.amazon.com/gp/product/0321125215/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0321125215&linkCode=as2&tag=swingwiki-20&linkId=ON5ZHLQDJDMQHFZ6
http://www.amazon.com/gp/product/0321125215/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0321125215&linkCode=as2&tag=swingwiki-20&linkId=ON5ZHLQDJDMQHFZ6
http://www.amazon.com/gp/product/0321803027/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0321803027&linkCode=as2&tag=swingwiki-20&linkId=WYCWLUXYCS4C7EZG
http://www.amazon.com/gp/product/0321967054/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0321967054&linkCode=as2&tag=swingwiki-20&linkId=KB5CYIPKAR4UTZTL
http://www.amazon.com/gp/product/0471081124/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0471081124&linkCode=as2&tag=swingwiki-20&linkId=Z4GI2C2ZP6EMJWOC
http://www.amazon.com/gp/product/0471081124/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0471081124&linkCode=as2&tag=swingwiki-20&linkId=Z4GI2C2ZP6EMJWOC
http://www.amazon.com/gp/product/1937785025/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1937785025&linkCode=as2&tag=swingwiki-20&linkId=4TTMKJLSHPVU4GZC
http://www.amazon.com/gp/product/1937785025/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1937785025&linkCode=as2&tag=swingwiki-20&linkId=4TTMKJLSHPVU4GZC
http://www.amazon.com/gp/product/B001GS7030/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B001GS7030&linkCode=as2&tag=swingwiki-20&linkId=QLHZEE7RPU4PEYFO
http://www.amazon.com/gp/product/B0030V0PEW/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B0030V0PEW&linkCode=as2&tag=swingwiki-20&linkId=I4HFS4ZKGOZBGBSY
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan

Bibliography and resources 42

• User Story Mapping: Discover the Whole Story, Build the
Right Product by Jeff Patton, ISBN 978-1491904909, O’Reilly
Media 2014

Useful web sites

Access these links quickly at http://www.50quickideas.com

• Fifty Quick Ideas discussion group
• QUPER web site
• Chaos Monkey Released Into TheWild, by Ariel Tseitlin 2012
• Improving Testing Practices at Google, a conference report
on Mark Striebeck’s presentation at XPDay 2009 by Gojko
Adzic

• The Forgotten Layer of the Test Automation Pyramid byMike
Cohn, 2009

http://www.amazon.com/gp/product/1491904909/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1491904909&linkCode=as2&tag=swingwiki-20&linkId=RHBALQJ5DBCKO25H
http://www.amazon.com/gp/product/1491904909/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=1491904909&linkCode=as2&tag=swingwiki-20&linkId=RHBALQJ5DBCKO25H
http://www.50quickideas.com
https://groups.google.com/forum/#!forum/50quickideas
http://quper.org
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html
http://gojko.net/2009/12/07/improving-testing-practices-at-google
http://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid

Legal Stuff
Title: Fifty Quick Ideas to Improve Your Tests

Print ISBN: 978-0-9930881-1-7

Published On: 15. May 2015.

Copyright (c) Neuri Consulting LLP

Authors: Gojko Adzic, David Evans and Tom Roden

Copy-editor: Marjory Bisset

Design and layout: Nikola Korac

Published by:

Neuri Consulting LLP

25 Southampton Buildings

London WC2A1AL

United Kingdom

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where these
designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with
initial capital letters or in all capitals. The author has taken care
in the preparation of this book, but makes no expressed or implied
warranty of any kind and assumes no responsibility for errors or
omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the in-
formation or programs contained herein. All rights reserved. This
publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or
likewise.

43

	Table of Contents
	Introduction
	Explore capabilities, not features
	Tap into your emotions
	Snoop on the competition
	Focus on key examples
	Describe what, not how
	Separate decisions, workflows and technical interactions
	Decouple coverage from purpose
	Make developers responsible for checking
	The End
	Authors
	Bibliography and resources
	Legal Stuff

