

Table of Contents

About the book 5 ..
About the author 6 ...
Sponsors 7 ..
Ebook PDF Generation Tool 9 ...
Book Cover 10 ..
License 11 ..

Introduction to Git 12 ..

Version Control 14 ...

Installing Git 16 ..

Basic Shell Commands 19 ...

Git Configuration 22 ..

Introduction to GitHub 26 ...

Initializing a Git project 31 ...

Git Status 33 ...

Git Add 35 ...

Git Commit 37 ...

Git Diff 40 ..

Git Log 42 ..

Gitignore 45 ..

SSH Keys 54 ..

Git Push 59 ..

Git Pull 62 ..

Git Branches 66 ..

Git Merge 73 ...

Reverting changes 80 ...

Git Clone 84 ..

Forking in Git 86 ..

Git Workflow 89 ..

Pull Requests 92 ..

Git And VS Code 95 ..
Installing VS Code 96 ..
Cloning a repository in VS Code 98 ..

80

Reverting changes

As with everything, there are multiple ways to do a specific thing. But
what I would usually do in this case I want to undo my latest commit
and then commit my new changes is the following.

Let's say that you made some changes and you committed the
changes:

git commit -m "Committing the wrong changes"

After that if you run git log, you will see the history of everything
that has been committed to a repository.

To undo the last commit, just run the following:

git reset --soft HEAD~1

The above command will reset back with 1 point.

Note: the above would undo your commit, but it would keep your code
changes if you would like to get rid of the changes as well, you need to
do a hard reset: git reset --hard HEAD~1

After that, make your new changes

81

Once you are done with the changes, run git add to add any of
the files that you would like to be included in the next commit:

git add .

Then use git commit as normal to commit your new changes:

git commit -m "Your new commit message"

After that, you could again check your history by running:

git log

Here's a screenshot of the process:

82

83

Another approach would be to use git revert COMMIT_ID instead.

Here is a quick video demo on how to do the above:

Reverting changes

https://www.youtube.com/watch?v=54Hy6KnfbuY

84

Git Clone

More often than not, rather than starting a new project from scratch,
you would either join a company and start working on an existing
project, or you would contribute to an already established open source
project. So in this case, in order to get the repository from GitHub to
your local machine, you would need to use the git clone command.

The most straight forward way to clone your GitHub repository is to first
visit the repository in your browser, and then click on the green Code
button and choose the method that you want to use to clone the
repository:

In my case, I would go for the SSH method as I already have my SSH
keys configured as per chapter 14.

As I am cloning this repository here, the URL would look like this:

git@github.com:bobbyiliev/introduction-to-bash-scripting.git

https://github.com/bobbyiliev/introduction-to-bash-scripting

85

Once you have this in my clipboard, head back to your terminal, go to a
directory where you would like to clone the repository to and then run
the following command:

git clone git@github.com:bobbyiliev/introduction-to-bash-
scripting.git

The output that you would get will look like this:

Cloning into 'introduction-to-bash-scripting'...
remote: Enumerating objects: 21, done.
remote: Counting objects: 100% (21/21), done.
remote: Compressing objects: 100% (16/16), done.
remote: Total 215 (delta 7), reused 14 (delta 4), pack-reused
194
Receiving objects: 100% (215/215), 3.08 MiB | 5.38 MiB/s,
done.
Resolving deltas: 100% (114/114), done.

Essentially what the git clone command does is to more or less
download the repository from GitHub to your local folder.

Now you can start making the changes to the project by creating a new
branch, writing some code, and finally committing and pushing your
changes!

One important thing to keep in mind is that in case that you are not the
maintainer of the repository and do not have the rights to push to the
repository, you would need to first fork the original repository and then
clone the forked repository from your account. In the next chapter, we
will go through the full process of forking a repository!

100

Setup a commit message template

If you want to speed up the process and have a predefined template for
your commit messages, you can create a simple file that will contain
this information.

In order to do that, open your terminal if you're on Linux or macOS and
create the following file: .gitmessage in your home directory. In order to
create the file, you can open it in your favorite text editor and then
simply put the default content you would like and then just save and
exit the file. Example content is:

cat ~/.gitmessage

#Title

#Summary of the commit

#Include Co-authored-by for all contributors.

To tell Git to use it as the default message that appears in your editor
when you run git commit and set the commit.template configuration
value:

$ git config --global commit.template ~/.gitmessage
$ git commit

101

Conclusion

If you prefer to code in Visual Studio Code and you also use version
control, I will definitely recommend you to give it a go and interact with
the repositories in VS code. I believe that everyone has their own style,
and they might do things differently depending on their mood as well.
As long as you can add/modify your code and then commit your
changes to the repository, there is no exactly correct/wrong way to
achieve this. For example, you can edit your code in vim and push the
changes using the git client in your terminal or do the coding in Visual
Studio and then commit the changes using the terminal as well. You're
free to do it the way you want it and the way you find it more
convenient as well. I believe that using git within VS code can make
your workflow more efficient and robust.

102

Additional sources:

Version Control - Read more about integrated Git support.
Setup Overview - Set up and start using VS Code.
GitHub with Visual Studio - Read more about the GitHub support in
VS code
You can also check this mini video tutorial on how to use the basics
of Git version control in Visual Studio Code

Source:

Contribured by: Alex Georgiev.
Initially posted here.

https://code.visualstudio.com/docs/editor/versioncontrol
https://code.visualstudio.com/docs/setup/setup-overview
https://www.notion.so/Git-version-control-with-Visual-Studio-Code-8de38af5cf324b9d89c4827e32dfe173
https://twitter.com/AlexGeorgiev17
https://devdojo.com/alexg/version-control-with-visual-studio-code-1

103

GitHub CLI

The GitHub CLI or gh is basically GitHub on command-line.

You can interact with your GitHub account directly through your
command line and manage things like pull requests, issues, and other
GitHub actions.

In this tutorial, I will give a quick overview of how to install gh and how
to use it!

This is a sample from "Introduction to Git and GitHub" by Bobby Iliev.

For more information, Click here.

https://devdojo.com/

