

Fifty Quick Ideas to Improve your
User Stories

Gojko Adzic and David Evans

This book is for sale at http://leanpub.com/50quickideas

This version was published on 2015-08-17

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

©2013 - 2015 Neuri Consulting LLP

http://leanpub.com/50quickideas
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Gojko Adzic and David Evans by spreading the word
about this book on Twitter!

The suggested hashtag for this book is #50quickideas.

Find out what other people are saying about the book by clicking
on this link to search for this hashtag on Twitter:

https://twitter.com/search?q=#50quickideas

http://twitter.com
https://twitter.com/search?q=%2350quickideas
https://twitter.com/search?q=%2350quickideas

Also By These Authors
Books by Gojko Adzic
Fifty Quick Ideas to Improve Your Tests

Impact Mapping

Books by David Evans
Fifty Quick Ideas to Improve Your Tests

http://leanpub.com/u/gojko
http://leanpub.com/50quickideas-tests
http://leanpub.com/impact-mapping
http://leanpub.com/u/davidevans_neuri
http://leanpub.com/50quickideas-tests

Contents

Introduction . 1

Tell stories, don’t write them 4

Divide responsibility for defining stories 8

Don’t worry too much about story format 12

Introduction

This book will help you write better stories, spot and fix common
issues, split stories so that they are smaller but still valuable, and
deal with difficult stuff like crosscutting concerns, long-term effects
and non-functional requirements. Above all, this book will help you
achieve the promise of agile and iterative delivery: to ensure that the
right stuff gets delivered through productive discussions between
delivery team members and business stakeholders.

Who is this book for?

This is a book for anyone working in an iterative delivery envi-
ronment, doing planning with user stories. The ideas in this book
are useful both to people relatively new to user stories and those
who have been working with them for years. People who work in
software delivery, regardless of their role, will find plenty of tips for
engaging stakeholders better and structuring iterative plans more
effectively. Business stakeholders working with software teams will
discover how to provide better information to their delivery groups,
how to set better priorities and how to outrun the competition by
achieving more with less software.

Introduction 2

Who is this book not for?

This book doesn’t cover the basics of stories. We assume that
readers know what Card-Conversation-Confirmation means, what
INVEST is and how to apply the basic strategies for splitting user
stories. This isn’t the first book you should read about user stories,
if those terms are unfamiliar. There are plenty of good basic books
out there, so read them first and then come back. Please don’t hate
us because we skipped the basics, but there is only so much space
in the book and other people cover the basics already well enough.

What’s inside?

Unsurprisingly, the book contains exactly fifty ideas. They are
grouped into five major parts:

• Creating stories: This part deals with capturing informa-
tion about stories before they get accepted into the delivery
pipeline. You’ll find ideas about what kind of information to
note down on story cards and how to quickly spot potential
problems.

• Planning with stories: This part contains ideas that will help
youmanage the big-picture view, set milestones and organise
long-term work.

• Discussing stories: User stories are all about effective conver-
sations, and this part contains ideas to improve discussions
between delivery teams and business stakeholders. You’ll
find out how to discover hidden assumptions and how to
facilitate effective conversations to ensure shared under-
standing.

• Splitting stories: The ideas in this part will help you deal
with large and difficult stories, offering several strategies for
dividing them into smaller chunks that will help you learn
fast and deliver value quickly.

Introduction 3

• Managing iterative delivery: This part contains ideas that will
help you work with user stories in the short and mid term,
manage capacity, prioritise and reduce scope to achieve the
most with the least software.

Each part contains ideas that we’ve used with teams over the last
five or six years to help them manage user stories better and get
more value out of iterative delivery. These ideas come from many
different contexts, from large investment banks working on internal
IT initiatives to small web start-ups shipping consumer software.
Software delivery is incredibly contextual, so some stories will
apply to your situation, and some won’t. Treat all the proposals in
this book as experiments – try them out and if they help keep doing
them.

Join the conversation

There is only so much space in a book, and some of the ideas
described deserve entire books of their own. We provide plenty of
references for further study and pointers for more detailed research
in the bibliography at the end of this book. If you’re reading
this book in electronic form, all the related books and articles are
clickable links. If you’re reading the book on paper, tapping the text
won’t help. To save you from having to type in long hyperlinks, we
provide all the references online at 50quickideas.com.

If you’d like to get more information on any of the ideas, get
additional tips or discuss your experiences with peers, join the
Google group 50quickideas.

There is, of course, one more important aspect of user stories:
agreeing on the right confirmation criteria for testing. To prevent
scope creep, we decided to put ideas about this topic in a separate
book. If you are interested, head over to 50quickideas.com and grab
a copy of Fifty Quick Ideas to Improve Your Tests.

http://50quickideas.com/l/us_1
https://groups.google.com/forum/#!forum/50quickideas
http://50quickideas.com/l/us_2

Tell stories, don’t write
them

User stories are often misunderstood as lightweight requirements,
given by the business stakeholders to the delivery team. This mis-
understanding leads to stories being collected in a task management
tool, with a ton of detail written down by business representatives.
Except in the very rare case where the business representative is
also a technical expert and has a great vision for the product, this
division of work prevents organisations from reaping the benefits
of user stories.

To make things crystal clear, if a team passively receives documents
in a hand-over, regardless of what they are called and whether they
are on paper, in a wiki or in a ticketing system, that’s not really
working with user stories. Organisations with such a process won’t
get the full benefits of iterative delivery.

User stories imply a completely different model: requirements by
collaboration. Hand-overs are replaced by frequent involvement
and discussions. When domain and technical knowledge is spread
among different people, a discussion between business stakeholders
and delivery teams often leads to good questions, options and

Tell stories, don’t write them 5

product ideas. If requirements are just written down and handed
over, this discussion does not happen. Even when such documents
are called stories, by the time a team receives them, all the important
decisions have already been made.

Effective discussions about user needs, requirements and solutions
become critically important with short delivery phases, because
there just isn’t enough time for anyone to sit down and document
everything. Of course, even with longer delivery phases document-
ing everything rarely works, but people often maintain a pretence
of doing it. With delivery phases measured in weeks or days,
there isn’t enough time to even pretend. When a single person
is writing and documenting detailed stories, the entire burden of
analysis, understanding and coordination falls on that person. This
is not sustainable with a rapid pace of change, and it creates an
unnecessary bottleneck. In essence, the entire pipeline moves at the
speed of that one person, and she is always too busy.

Try telling stories instead of writing down details. Use physical
story cards, electronic ticketing systems and backlog management
tools just as reminders for conversations, and don’t waste too much
time nailing down the details upfront. Engage business stakeholders
and delivery team members in a discussion, look at a story from
different perspectives and explore options. That’s the way to unlock
the real benefits of working with user stories.

Key benefits

Discussions allow business representatives not only to explain what
they want, but also to ensure that the delivery team members un-
derstand this correctly. Misunderstandings between different roles
are a major problem with any kind of hand-over. Explaining a story
face to face prevents problems from falling through knowledge
gaps.

The second benefit is faster analysis. When the entire team is en-

Tell stories, don’t write them 6

gaged in a discussion, functional gaps, inconsistencies and unclear
requirements get discovered faster than when a single person needs
to write down the details.

The most important benefit of discussions compared to hand-overs
is that they produce better solutions. To be able to design good
solutions, people need to know business plans and opportunities,
understand the problem domain, have in-depth knowledge of tech-
nical constraints and an awareness of potential new technologies.
Engaging a group of people in analysis from different perspectives
helps the team benefit from shared knowledge.

How to make it work

There are several common reasons for writing down detailed sto-
ries. Most of these needs can be met without document hand-overs.
Here are the most common excuses:

• When regulatory requirements or the political environment
require formal sign-offs, written details serve as a record of
what was approved.

• When different business stakeholders have to agree or ap-
prove plans, having something written to send out is use-
ful. Geographically distributed organisations often have this
need.

• If stories depend on the specialist knowledge of people who
aren’t available to participate in story discussions, written
details are a good way to transfer their knowledge.

• Where third-party dependencies or legacy systems require
time-consuming analysis and investigation, involving the
entire team in that would be a waste of time. Written details
are a good way to capture the outcomes of the investigation.

The most common excuse for handing over documents is insisting
on formal approval of scope. Without going into whether formal

Tell stories, don’t write them 7

approval is right or wrong, if youmust have it, postpone the sign-off
until after story discussions. Get each story signed off as you discuss
it. We’ve worked with several teams in regulated environments
where due process demanded that a business sponsor approves
scope. In such cases, business sponsors have signed off on speci-
fications with examples produced as a result of story refinement
and analysis discussions.

If the final scope has to be approved by several different business
stakeholders, have the conversation a few days before officially
starting to implement a story, and then coordinate with the stake-
holders. For example, a team we worked with in an insurance com-
pany needed to get the details approved by all country managers, so
they discussed stories a week ahead of the iteration. Their product
owner then collected the results of the discussions, refined them
into specifications, and sent them out to all business stakeholders
to agree.

Effective teams with third party dependencies, or those that rely on
external specialist knowledge, generally dedicate one or two people
to investigate those dependencies a week or two before starting a
story. The results of the investigations are a great starting point for
the story analysis discussions.

Some teams analyse stories twice as a group: once a week or
two ahead of the iteration to collect open questions and focus
the upfront investigation, and the second time just ahead of the
iteration to communicate and agree on the details. In such cases the
details are often collected in the same task management tool as the
stories, but teams treat them only as notes to start a discussion, not
as formal requirements for sign-off.

Divide responsibility for
defining stories

One of the most common mistakes with user stories is to expect
business stakeholders to fully define the scope. By doing this,
delivery teams are effectively avoiding the responsibility (and the
blame) for the ultimate business success of a solution. Although a
case can be made for this approach, there is also a huge unwanted
side-effect: people who are inexperienced in designing software
products – business users – end up having the ultimate respon-
sibility for product design. Unless business users have detailed
knowledge of the technical constraints of your product, an insight
into current IT trends and capabilities, and a solid understanding of
your architectural choices, this is not a good idea. We could write
a whole book on why this is a bad idea, but Anthony Ulwick beat
us to it – read What Customers Want , if you need convincing. The
end result is often technically suboptimal and buggy, with lots of
technical debt because of bad design decisions. Delivery teams then
have to waste a huge amount of time and money maintaining the
overcomplicated solution.

The cause of this problem is a common misconception of the
stakeholder role in agile delivery methods. The product owner or

http://www.amazon.com/gp/product/0071408673/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0071408673&linkCode=as2&tag=swingwiki-20&linkId=CCMSIUVDLKPK2NUF

Divide responsibility for defining stories 9

XP customer should be responsible for deciding what the team
will work on. But deciding isn’t the same as defining, and this is
where things go wrong! Getting business stakeholders to design
solutions wasn’t the original intention of user stories – but many
teams have fallen into this trap. If this situation sounds familiar,
here’s an experiment that can help you fix it:

1. Get business stakeholders (sponsors, XP customer, product
owners…) to specify only the ‘In order to…,’ and ‘As a …, ‘
parts of a user story

2. Get the delivery group (team) to propose several options for
‘I want…’

3. Both sides together evaluate the options and the business
stakeholders decide which one will be implemented

We’ve done this experiment with teams that misunderstand sto-
ries, where their business users fully specify everything in a task
management tool, expecting developers to just code without a
discussion. Explicitly limiting the scope of what business users are
allowed to specify can force a conversation. People can see the
benefits of face-to-face discussions instead of handing information
over using a task management tool. Conversation is a lot more
difficult to skip when one side can’t write the whole story on their
own. By making the delivery team come up with a solution, this
technique can also help to provide a sense of ownership in the
delivery team, and wake up their creative side.

Key benefits

The major benefit of this approach is that it forces both sides to
have a conversation in order to decide on the actual solution. De-
livery team members have to explain several options, and business
stakeholders have to evaluate them, so this experiment can shake

Divide responsibility for defining stories 10

up teams where user stories normally come fully specified from
the business side. The collaboration also puts the responsibility for
solution design on the people who are good at designing solutions
– the delivery team.

Because business stakeholders are constrained in specifying only
the role and the business benefit of a user story, they typically
think much harder about the impacts they want to cause instead
of the features. That itself is a huge step towards preventing the
user story stream of consciousness. The stories move from a generic
unspecified value (‘in order to improve business’, or ‘in order to sell
more’) to something very specific (‘in order to monitor inventory
50% faster’). This helps everyone to understand the dimension of
the problem, and how much is worth spending on solving it, before
you commit to a solution.

The third big benefit of this approach is that it forces both business
stakeholders and delivery teams to evaluate several solutions, re-
inforcing the idea of flexible scope and moving analysis from ‘did
we understand this correctly?’ to ‘what’s the best possible thing to
do?’. Expecting to deal with several options also reinforces the idea
that there isn’t much point in defining solutions in too much detail
upfront.

How to make it work

Communicate clearly upfront that this is an experiment and that
you want to run it for a while and then evaluate with everyone
(business stakeholders and delivery team). This will make it easier
to get buy-in. Running process changes as limited, reversible ex-
periments is an effective way to avoid pushback and power-play
politics. (For more on this, read Switch by Chip and Dan Heath).

Agree at the start that features are not allowed in the ‘In order to…’
part – this is an easy way to cheat the experiment. The ‘In order
to…’ part shouldn’t say anything about what the software or the

http://www.amazon.com/gp/product/B0030DHPGQ/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B0030DHPGQ&linkCode=as2&tag=swingwiki-20&linkId=6ZZ26FTGPMMUUTP5

Divide responsibility for defining stories 11

product does, only what the users will be able to do differently. An
easy way to avoid the problem is to have a rule that it must specify
a behaviour change, or enable or prevent a behaviour.

Try to propose at least three options for how the software might
provide the value business users expect. Faced with only two
options, people often just focus on choosing one of the presented
alternatives. With more possibilities, the discussion tends to be
focused on the constraints, and pros and cons of different ideas, and
often inspires someone to propose a completely new, much better,
solution.

Let business stakeholders also propose options in the discussion –
but not before. Presenting different options and their constraints
provides a better decision-making framework for evaluating ideas,
including those that business sponsors have in their heads even
before the meeting (and they always do have them). It’s absolutely
fine to pick an option proposed by the business users, if they still
think that’s the best solution at the end of the discussion.

The discussion shouldmake everyone quickly understand that there
is always more than one solution, and that the first idea is often not
the best one. Once people are OKwith this, and they see the benefits
of collaboratively defining scope, you can relax the rules.

Don’t worry too much
about story format

There is plenty of advice out there about different formats of story
cards. Some argue that putting the business value statement first
focuses delivery on business value, some argue that ‘So that I
can’ is a much better start than ‘In order to’, and we’ve heard
passionate presentations about how ‘I suggest’ is better than ‘I
want’. We’re going to swim against the current here and offer
a piece of controversial advice: don’t worry too much about the
format !

There are three main reasons why you shouldn’t trouble yourselves
too much with the exact structure of a user story, as long as the key
elements are there:

• A story card is ideally just a token for a conversation. Assum-
ing the information on the card is not false, any of the formats
is good enough to start the discussion. If the information on
the card is false, they are all equally bad.

• Although we’ve read and heard plenty of arguments for
different card types, there wasn’t a single clear proof that

Don’t worry too much about story format 13

choosing one format over another improved team perfor-
mance by a significant amount. Show us where reordering
statements on a story card improved profit by more than 1%
and we’ll talk.

• As an industry, we love syntax wars. If you ever need proof
that IT is full of obsessive-compulsive types, look up on the
web the best indentation level, the undoubted superiority
of tabs over spaces, or the most productive position for
curly braces. Beyond the obvious argument about personal
preference, there is value in choosing one standard way for
writing code for the entire team, regardless of what gets
chosen. But code is a long-term artefact, and user stories
are discussion reminders that have served their purpose after
a conversation. So the standardisation argument does not
really apply here.

The Connextra card template (‘As a… I want … So that’) is a great
structure for a discussion token. It proposes a deliverable and puts
it in the context of a stakeholder benefit, which helps immensely
with the discussion. But that’s not the only way to start a good
conversation. As long as the story card stimulates a good discussion,
it serves its purpose. Write down who wants something and why
they want it in any way you see fit, and do something more
productive with the rest of your time than filling in a template just
because you have to. For example, make sure that the person in
question is actually a stakeholder, and that they actually want what
the card says.

An interesting take on this is to experiment with different formats
to see if something new comes out during discussion. For example:

• Name stories early, add details later
• Avoid spelling out obvious solutions
• Think about more than one stakeholder who would be in-
terested in the item – this opens up options for splitting the
story

Don’t worry too much about story format 14

• Use a picture instead of words
• Ask a question

Chris Matts, one of the agile business analysis thought-leaders, has
a nice example:

My favourite story card had the Japanese Kanji charac-
ters Ni andHon (the name for Japan in native script) on
it. Nothing else. It was the card for Japanese language
translation.

When we wrote this, Gojko was working on a product milestone
that wasmostly about helping users obtain informationmore easily.
Most user stories for the milestone were captured as examples of
questions people would be able to answer, such as: ‘How much
potential cash is there in blocked projects?’ and ‘What is the average
time spent on sales?’. These are perfectly good stories, as they fulfil
both important roles nicely: they allow delivery teams to schedule
things and they spark a good discussion. Each question is just an
example, and leads to a discussion on the best way of providing
information to users to answer a whole class of related questions.
Forcing the stories into a three-clause template just for the sake of
it would not give the team any more benefit, and it might even
mislead the discussion as it would limit it to only one solution.

Key benefits

Letting go of a template, and trying out different formats, can help
to shake up the discussion. This also helps to prevent fake stories.
Following a template just for the sake of it is a great way to build a
cargo cult. This is where stories such as ‘As a trader I want to trade
because I want to trade’ come from, as well as ‘As a System I want
the … report’.

Don’t worry too much about story format 15

By trying out different formats, you might wake up some hidden
creativity in the team, or discover a different perspective during
the discussion about a story.

How to make it work

The one thing you really have to do to make this work is to avoid
feature requests. If you have only a short summary on a card, it
must not be a solution without context. So, ‘How much potential
cash is in blocked projects?’ is a valid summary, but a ‘Cash report’
isn’t. The potential cash question actually led to a pop-up dialog that
presented a total of cash by status for any item in the document, not
to a traditional tabular report.

Focus on the problem statement, the user side of things, instead
of on the software implementation. The way to avoid trouble is to
describe a behaviour change as the summary. For example ‘Get a
profit overview faster’, or ‘Manage deliveries more accurately’.

	Table of Contents
	Introduction
	Tell stories, don't write them
	Divide responsibility for defining stories
	Don't worry too much about story format

